Evaluating drones and novel imaging technology for mapping and monitoring of aquatic environments (DRONING)

Kasper Hancke, Eli Rinde, Trine Bekkby, David Eidsvoll, Eva Ramirez-Llodra, Robert Paulsen

Norwegian Institute for Water Research (NIVA)

Workshop CIENS 20. Sep 2017

Contact: kasper.hancke@niva.no

Kasper Hancke

What? -objectives

Explore and evaluate flying drones and novel imaging technology for mapping and monitoring of costal marine habitats

- Mapping of marine habitats, i.e. distribution patterns of eelgrass, seaweeds and sediments in shallow waters
- Detecting **abundance of the invasive species**; e.g. Pacific Oyster (*Magallana gigas*)
- Quantifying **seaweed biomass and C deposits** in beach zones
- Quantifying marine litter/plastics in the beach zone

Why? - need for improved mapping and monitoring tools

- Eelgrass and seaweed vegetation are essential to coastal ecology, as feeding and nursery grounds for fish and important for CO₂ uptake and C sequestration
- The invasive Pacific Oyster have increased dramatically in number and distribution recently, but quantitative abundance and spreading pattern is unknown
- Marine litter/plastic has a tremendous impact on coastal systems and its distribution is widely unknown
- Current methods for mapping costal habitats are **labor intensive** and inefficient to quantify changes and dynamics
- Drone-based imagery can assess shallow water regions with high spatial (cm's) and temporal (hours) resolution, and provide cost-effective surveys applications

How? – drones and imaging techniques

(C

F

NIV

d rotor drones (DJI 6

ideo only for de

THE VISIBLE SPECTRUM · Wavelength in Nanometers

alegrass men tyndt

Kasper Hancke

Mapping distribution patterns of eelgrass, seaweeds and sediments in shallow waters bays and inlets

Mapping distribution patterns of eelgrass, seaweeds and sediments in shallow waters bays and inlets

 Drone images data were validated against 'ground truth' distribution mapping, applying traditional techniques using geo-reference underwater recordings from small boats

Middelborg	2m calculation window			5m calculation window		
	0-2m depth	0-3m depth	All depths	0-2m depth	0-3m depth	All depths
MS-NDAI	< 0.001	<0.001	<0.001	<0.001	<0.001	<0.001
MS-NDVI	0.311	0.159	< 0.001	0.003	<0.001	<0.001
MS-RedEdge	0.522	0.429	0.007	0.166	0.079	<0.001
RGB-ChIA	0.447	0.753	0.002	0.283	0.705	0.001

Quantifying marine litter/plastics in the beach zone

Quantifying seaweed biomass and C deposits in beach zones

Deposits of seaweed biomass the day after a storm

Kasper Hancke 1

Quantifying seaweed biomass and C deposits in beach zones

Length: 5.40 cm Arv. Height: 24.5 cm Volume: 1.32 m³ per meter beach Volume in picture: 15.8 m³

Kasper Hancke

19.09.2017

Preliminary results and conclusions

- Spectral imagery from drones can be applied to map vegetation coverage in shallow water ecosystems
 - Specific Normalized Index algorithms need further development and improvements for accurate estimate and separation between habitat types
- Biotic and abiotic mass and structures can be quantified and tracked in space and time
 - e.g. seaweed and sediment deposits in the beach/river zone across seasons and years
- Marine litter/plastics can be observed

.

•

- Identification and quantification are possible with future developments
- Too early to conclude on detection of Pacific Oyster distribution

Thank you, any questions?

Kasper Hancke

19.09.2017

12